
Chapter 16

Hydrophobic Mismatch in Membranes:

When the Tail Matters

Bhagyashree D. Rao, Sandeep Shrivastava, and Amitabha Chattopadhyay

Abstract Hydrophobic mismatch is a specific case of lipid-protein interaction that

takes place when the hydrophobic thickness of the transmembrane region of a

membrane protein does not match the hydrophobic thickness of the membrane in

which it is localized. Depending on the type of mismatch (positive or negative), the

responses of membrane lipids and proteins vary. Hydrophobic mismatch could lead

to changes in membrane protein folding, conformation, oligomerization and activ-

ity due to adaptation (mismatch response) by lipids or proteins. Hydrophobic mis-

match can be observed in peptides as well as in larger transmembrane proteins that

traverse the membrane a number of times such as G protein-coupled receptors

(GPCRs). We propose a model of GPCR activation via hydrophobic mismatch

based on literature data. Hydrophobic mismatch could play a role in cellular sorting

and trafficking due to the gradient of cholesterol present in cellular organelles

which gives rise to a gradient of increasing bilayer thickness from the endoplasmic

reticulum to Golgi to the plasma membrane. We envision that hydrophobic mis-

match could be an important player in lipid-protein interactions in the complex

cellular milieu.
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16.1 Lipid-Protein Interaction

Biological membranes are organized molecular assemblies held together due to

the hydrophobic effect [1] and display large variations in their lipid and protein

compositions. They offer individual identity to the cell and its organelles, and are

involved in cell-cell communication. Membrane proteins are crucial since they

carry out a number of vital processes in cells and cell membranes help in

maintaining an optimum environment for their function. Contrary to earlier

models [2], cellular membranes are often crowded [3, 4] with a high protein

density (typically �25,000 proteins/μm2; [5]). This is particularly true for bio-

logical membranes that carry out important cellular functions. A consequence of

such crowding is that lipid-protein interactions play a crucial role in maintaining

the structure and function of biological membranes [6, 7]. A major part of mem-

brane proteins is immersed in the lipid bilayer and this offers a chance to mem-

brane lipids to interact with the proteins for optimum functioning. Variations in

cell membrane lipid composition due to stress or stimuli could therefore alter

lipid-protein interactions.

In most cases of lipid-protein interactions, the interaction is mainly between

various residues of the protein and the headgroup of the lipid (the hydroxyl group

in case of cholesterol-protein interactions). However, there is a particular type of

lipid-protein interaction, where the tail of the lipid is more important in terms of

interaction with the membrane protein or peptide (and therefore ‘the tail

matters!’).

16.2 Hydrophobic Mismatch

The hydrophobic thickness of the membrane is a fundamental property that has a

profound effect on transmembrane protein structure and function [8, 9]. Hydro-

phobic mismatch is a specific case of lipid-protein interaction that takes place when

the hydrophobic thickness of the transmembrane region of a membrane protein

does not match the unperturbed hydrophobic thickness of the membrane in which it

resides (see Fig. 16.1). Hydrophobic mismatch could lead to changes in membrane

protein folding, conformation, and activity [10–12]. Such mismatch has obvious

energetic consequences due to the juxtaposition of energetically unfavorable

regions of the membrane lipids and the protein. While many lipid-protein interac-

tions involve interaction of specific residues of membrane proteins with specific

lipid headgroups (such as negatively charged lipids), hydrophobic mismatch is

dependent on the hydrophobic thickness of the membrane bilayer, specifically of

the annular lipids and the hydrophobic surface of the protein in contact with the

membrane lipids. Mismatch is therefore an interaction that causes local pertur-

bations in the membrane and may be linked to lateral heterogeneity in the mem-

brane [13, 14].
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16.3 How to Determine Hydrophobic Thickness

of Membranes and Membrane Proteins?

The extent of mismatch between the hydrophobic thickness of the membrane and

the protein would determine the extent of the mismatch response [15]. A key

concern is to experimentally estimate the hydrophobic thickness of membrane
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Fig. 16.1 A schematic representation of two types of hydrophobic mismatch and possible

adaptations by membrane lipids. (a) A positive mismatch is induced when transmembrane domain

length (dTM) of the membrane protein is greater than the membrane bilayer hydrophobic thickness

(dHT). Under this condition (dTM > dHT), annular lipids surrounding the protein would get

stretched to match the hydrophobic thickness of the transmembrane segment of the protein. This

induces local ordering of lipid acyl chains in the vicinity of the protein and an increase in the phase

transition temperature, leading to a reduction in the phospholipid headgroup area. The top view is

shown at the right. (b) Negative mismatch results when the transmembrane domain length is

shorter than the bilayer hydrophobic thickness (i.e., dTM < dHT). Negative mismatch induces local

disorder in annular lipid chains, and a decrease in the phase transition temperature. This results in

an increase in the phospholipid headgroup area. The top view is shown at the right
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proteins and the membrane bilayer. Determining membrane thickness is a

non-trivial issue due to fluctuations of the membrane bilayer in addition to the

inherent variations in available bilayer structural data [16]. One way to obtain

hydrophobic thickness is from continuous X-ray scattering which measures the

Gaussian distribution of the phosphate groups, and therefore the phosphate-to-

phosphate distance [17]. The boundary of the hydrophobic thickness of the mem-

brane is placed at the region where water ceases to be detected in the bilayer, i.e., at

the sn-2 carbonyl carbon [16, 18]. Hydrophobic thickness can therefore be obtained
from the phosphate-to-phosphate distance by subtracting the thickness of the polar

head group region, known from neutron diffraction of specifically deuterated

samples to be 5.5 Å [19, 20]. Calculated this way, the hydrophobic thickness of

pure fluid phase bilayers is found to vary linearly with acyl chain length [17]. This

fluid phase thickness can be used to calculate the thickness of the gel phase by

accounting for lipid tilt (�30�) and increased thickness (�30%) due to the all-trans
acyl chain conformation in the gel phase [21]. However, such a calculation would

give only approximate values for gel phase bilayers since average lipid tilt is known

to be dependent on chain length [22].

The hydrophobic thickness of membrane proteins is more difficult to assess due

to difficulty in obtaining high-resolution structures of membrane proteins. Hydro-

phobic thickness may be determined directly from crystal structures when the struc-

ture contains resolved lipid molecules that would mark the membrane interface

[23]. In general, hydropathy profiles can provide an estimate of the number of

residues in the transmembrane domain. The length of the hydrophobic (transmem-

brane) region can then be calculated assuming the transmembrane domain to be an

α-helix, oriented parallel to the bilayer normal, with a vertical rise of 1.5 Å per

residue. However, due to possible helical tilt, and contributions from the flanking

residues, calculation of membrane protein thickness based on the length of the

transmembrane domain may not always be straightforward. In addition, hydro-

phobic thickness of proteins has also been determined experimentally [24, 25].

16.4 Lipid and Protein Adaptation: Responses

to Hydrophobic Mismatch

Lipids and proteins adapt to two different types of hydrophobic mismatch (positive

and negative) in a number of ways. A positive mismatch occurs when the trans-

membrane domain length (dTM) of the membrane protein is more than the mem-

brane bilayer hydrophobic thickness (dHT). When dTM > dHT, annular lipids

surrounding the protein would get extended to match the hydrophobic thickness

of the transmembrane domain of the protein (see Fig. 16.1a). This induces local

ordering of annular lipid acyl chains resulting in an increase in the phase transition

temperature, and a decrease in the phospholipid headgroup area (see Fig. 16.1a).

The second kind of mismatch, i.e., negative mismatch, takes place when the
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transmembrane domain length is shorter relative to the bilayer hydrophobic thick-

ness (i.e., dTM< dHT). Negative mismatch causes compression and local disorder-

ing of annular lipid acyl chains, a reduction in the phase transition temperature and

a concomitant increase in the phospholipid headgroup area (see Fig. 16.1b). On the

other hand, there could be several possible adaptations of the protein in case of

positive mismatch (i.e., when dTM> dHT) which include protein aggregation, tilting

of transmembrane helices and conformational changes (see Fig. 16.2a). In case of

negative mismatch (i.e., when dTM< dHT), possible responses of the protein

could be lateral aggregation, surface orientation and conformational change (see

Fig. 16.2b). In addition, hydrophobic mismatch is believed to play an important role

in membrane protein insertion and folding [26].

16.5 Hydrophobic Mismatch Models

Adaptation to hydrophobic mismatch has previously been described using a com-

prehensive thermodynamic model termed as the ‘mattress model’ [27]. The main

idea underlying the mattress model is that any alteration of the sharp melting phase

transition temperature (Tm) of lipid bilayers by the inclusion of proteins is a direct

consequence of adaptation to hydrophobic mismatch that would occur on either

side of the phase transition (since phase transition involves a large change (�30%)

in the hydrophobic thickness of the membrane; [21]). In this model, adaptation to

hydrophobic mismatch is modeled as a change in thickness of the annular lipid ring

(a)

Helix tiltAggregation Conformational
change

(b)

Aggregation Conformational
change

Surface
orientation

dHT
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dTM
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Fig. 16.2 A schematic

representation of the

possible adaptations of

transmembrane proteins to

hydrophobic mismatch. (a)

Various adaptations of the

protein upon positive

mismatch (i.e., dTM > dHT).

These include protein

aggregation, tilting of

transmembrane helices and

conformational changes

(shown in a different color)

of the protein. (b) Under

conditions of negative

mismatch (i.e., dTM < dHT),

the protein could adapt by

aggregation, surface

orientation and

conformational change

(shown in a different color)
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as a result of compression or stretching of acyl chains, which leads to a shift (ΔT ) in
the phase transition temperature, relative to the Tm of a pure lipid bilayer. The

magnitude of this shift is related to the extent of the mismatch. Therefore, long

proteins in a short bilayer would cause stretching of annular lipids resulting in a

shift toward a more gel-like (ordered) phase, and an increase in Tm (see Fig. 16.1a).

Short proteins in a long bilayer would lead to compression of annular lipids, shift

toward a more fluid phase and a decrease in Tm (see Fig. 16.1b).

In another model, Fattal and Ben-Shaul [28] characterized lipid-protein interac-

tions and perturbations due to mismatch in terms of lipid deformation free energy

change (ΔF), represented as a sum of hydrophobic core (lipid chain) and interfacial

contributions. Importantly, this model assumes that protein-induced deformations

persist in the membrane plane from the lipid-protein interface over typically a few

molecular diameters (see Fig. 16.1). The lipid deformation free energy change (ΔF)
accounts for changes in lipid chain order at the lipid-protein interface. When the

hydrophobic lengths of the membrane and protein are equal, ΔF> 0 due to the loss

of conformational entropy experienced by the lipid chains at the protein interface.

In mismatch situations, when the protein is longer than the membrane, ΔF further

increases due to the enhanced stretching of the lipid chains. On the other hand,

when the protein is shorter than the membrane, conformational entropy increases

due to compression, but ΔF increases due to an increase in interfacial free energy.

Therefore, ΔF is at a minimum when the hydrophobic lengths of the protein and

membrane are equal but is always positive.

It should however be noted that theoretical models treat transmembrane proteins

as smooth, rigid cylindrical impurities in the bilayer without vertical flexibility,

characterized only by cross sectional area and hydrophobic thickness [15]. At the

lipid-protein interface, the protein is assumed to be a nearly planar, smooth hydro-

phobic wall. In addition, these models are only valid for proteins at the infinite

dilution limit and therefore do not account for any possible protein-protein inter-

actions (e.g., lateral aggregation). Importantly, theoretical models highlight mem-

brane deformation as a vital consequence of mismatch. Membrane deformation is

related to the material properties of the membrane, and is therefore dependent on

membrane composition, specifically cholesterol content ([29]; see later).

16.6 Hydrophobic Mismatch in Peptides

We will highlight representative examples of hydrophobic mismatch in peptides,

which have been extensively studied. Gramicidin is a peptide which forms proto-

typical ion channels specific for monovalent ions and has been studied extensively

to chararcterize lipid-protein interactions [30]. Previous experiments have shown

that gramicidin adopts non-channel conformations under conditions of hydrophobic

mismatch and aggregates in thicker gel phase membranes [31]. Simulation studies

support the results obtained and revealed that in extremely negative mismatched

condition, bilayer thinning occurs and is accompanied by conversion of gramicidin
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from channel to non-channel form [32]. It has been previously shown that a mis-

match between the length of gramicidin and the lipid acyl chains could induce

non-bilayer phase (such as the hexagonal II phase) in model membranes [33]. In

another study, the affinity of the pore-forming cholesterol-dependent peptide

Perfringolysin O was found to increase for ordered lipid domains by hydrophobic

matching between transmembrane hydrophobic thickness and bilayer hydrophobic

thickness [34].

The WALP family of peptides [35], contains a stretch of alternating Leu-Ala

residues that form the hydrophobic core of the peptide and two Trp residues at both

ends that act as membrane interfacial anchors. Trp-flanked WALP peptides form

rigid α-helices in the membrane [36] and have proved to be useful to understand

basic characteristics of mismatch adaptation [37, 38]. Interestingly, synthetic

WALP peptides illustrate the role of anchoring residues in mismatch adaptation,

due to specific interactions of amino acid side chains with the membrane interface.

The mismatch response of peptides of equal transmembrane thickness (i.e., with the

same number of residues in the hydrophobic core) has been shown to be dependent

on the nature of the anchoring residues [39–41]. Trp-flanked WALP peptides

induce a larger lipid response (i.e., acyl chain ordering) in shorter bilayers as com-

pared to equivalent Lys-flanked (KALP) or Arg-flanked (RALP) peptides [40, 42]

due to the ‘snorkeling’ effect.

16.7 Hydrophobic Mismatch in GPCRs: A Model

for GPCR Activation

G protein-coupled receptors (GPCRs) are important signaling hubs that serve as key

drug targets in all clinical areas [43, 44]. Hydrophobic mismatch not only affects

peptide orientation and function, but recent reports show that it plays a key role in

maintaining the structure and function of GPCRs. For example, NMR measure-

ments have shown that increasing bilayer thickness favors formation of meta-

rhodopsin II (MII, active conformation) while oligomerization favors

metarhodopsin I (MI, inactive conformation) [45].

Integral membrane proteins such as GPCRs utilize oligomerization as a response

to hydrophobic mismatch since this helps to prevent the exposure of specific

residues. The dimerization of β2-adrenergic receptor has been studied at different

cholesterol concentrations and a modulation of the dimer interface was observed by

increasing cholesterol concentration [46]. Interestingly, in case of the β2-adrenergic
receptor, the hydrophobic mismatch was observed to be higher in presence of

cholesterol [7, 46].

An elegant model of GPCR activation could be envisaged based on results of

Alves et al. [47] on hydrophobic mismatch of human delta opioid receptor (see

Fig. 16.3). This is based on active state dependent partitioning of the receptor, i.e.,

preferential partitioning of the agonist bound delta opioid receptor to
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Unliganded
receptor 

Sphingomyelin-enriched
domain 

(a)

(b)

PC-enriched
domain

Preferential partitioning to 
sphingomyelin-enriched thicker membrane 

upon activation by agonist (    ) 

Sphingomyelin-enriched
domain

PC-enriched
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L
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Fig. 16.3 Proposed model for activation of GPCR based on hydrophobic mismatch. (a) The

receptor is localized in the shorter phosphatidylcholine (PC)-rich domain in the absence of ligand.

(b) Upon activation by the agonist, the receptor undergoes conformational change such that the

length of its transmembrane domain increases from L (unliganded state) to L0 (activated state). In

response to the change in the transmembrane length of the receptor, the activated receptor is

preferentially partitioned in the thicker sphingomyelin-rich domain due to favorable hydrophobic

matching. This model is inspired from data reported in Alves et al. [47] on the human delta opioid

receptor
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sphingomyelin-rich thicker regions of the membrane due to elongation of its trans-

membrane domain upon activation by the ligand (see Fig. 16.3).

16.8 Is Hydrophobic Mismatch Relevant in Cell

Membranes?

Cellular membranes display heterogeneity in thickness and composition due to the

presence of a cholesterol gradient in various intracellular membranes. In eukaryotic

cells, there is a gradient of increasing bilayer thickness from the endoplasmic reti-

culum to Golgi to the plasma membrane and all membrane proteins traverse this

path. Hydrophobic mismatch has been proposed to play a crucial role in such

sorting [48].

The endoplasmic reticulum is the site of cholesterol biosynthesis, yet interest-

ingly has the lowest cholesterol content in membranes of the secretory pathway

[48]. Cholesterol content increases gradually in the Golgi (along the cis-, medial-,
and trans-Golgi stacks) with the plasma membrane having the highest concentra-

tion of cholesterol (�90% of total cellular cholesterol). This cholesterol gradient

could set up a possible thickness gradient along the biosynthetic pathway of mem-

brane proteins since cholesterol is known to increase thickness of bilayers

[49, 50]. This means that hydrophobic mismatch could occur if proteins specific

to the Golgi, for example, gets mis-targeted to the plasma membrane. Interestingly,

several studies have pointed out the importance of the transmembrane domain

(TMD) in retention of proteins in the Golgi and ER [51–56]. Analysis from hydro-

pathy plots showed that the average length of the TMD in Golgi proteins is �15

amino acids whereas the average length of the TMD in plasma membrane proteins

is �20 amino acids [48, 51]. For example, replacing the TMD of a Golgi protein

(sialyltransferase) by a hydrobhobic poly-Leu stretch of the same length results in

its retention in the Golgi. However, when the length of the poly-Leu sequence was

increased to �23 amino acids, the protein was expressed at the cell surface. This

proves the significance of the length rather than sequence of the TMD to be the

driving factor for sorting of proteins in cells [48, 51–53].

Long chain lipids and cholesterol often phase separate to form membrane

domains of increased thickness in a complex membrane. Mismatched proteins

could segregate to domains to relieve mismatch under such conditions. This type

of membrane domains act as clustering hubs for mismatched proteins. Hydrophobic

mismatch could lead to sorting of membrane proteins from cholesterol/sphingolipid

rich domains of the Golgi to the plasma membrane. This hypothesis is further sup-

ported by the prediction that shorter proteins are efficiently excluded out of thicker

cholesterol rich domains due to the high energetic penalty of deformation [57]. We

should mention here that an alternate hypothesis, based on membrane thickness

change along the exocytic pathway due to depletion of membrane proteins (rather

than cholesterol content), has been reported [58].
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16.9 Future Perspectives: What Lies Ahead

Biological membranes are complex, closely packed assemblies of lipids, proteins

and carbohydrates. Work from a large number of groups over the years has shown

the relevance of lipid-protein interactions in maintaining membrane structure and

function. Most of these interactions involve the phospholipid headgroup with its

various characteristics (size, shape, charge). In contrast, hydrophobic mismatch

brings into focus the importance of the lipid acyl chains in lipid-protein interac-

tions. In this review, we have highlighted the importance of hydrophobic mismatch

in model and biological membranes with representative examples. Since mem-

branes of eukaryotic cells contain thousands of diverse lipid types [59, 60], there

could be further implications of hydrophobic mismatch that would encompass a

broader area of cell biology. This will become apparent in years to come with

advancements in lipidomics, proteomics and related approaches.
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